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A numerical scheme is developed which solves the axisymmetric tokamak equilibrium under 
the constraints of prescribed values of external coil currents and plasma parameters for a 
plasma with its surface in contact with an outside limiter. The application of this method to 
the tokamak equilibria with high poloidal beta and/or non-circular cross section or with 
divertor contiguration of which stagnation point is located outside of the torus is described 
and discussed. 0 1986 Academic Press, Inc. 

I. INTRODUCTION 

An axisymmetric MHD equilibrium code is a basic numerical tool for the 
magnetics design, the MHD stability analysis, the experimental data analysis and 
other problems in a tokamak. Several types of equilibrium codes have been 
developed to answer these problems. In most of these codes, the vacuum magnetic 
field is adjusted during iterations so that the plasma position is set to the prescribed 
one, or the poloidal flux on a certain surface surrounding the plasma column is 
fixed. 

In the problem such as the experimental data analysis, however, we need to solve 
the equilibrium for prescribed values of external conductor currents, plasma 
current, poloidal beta value and given positions of material limiters of several types. 
In this type of the equilibrium problem, it was found that the standard iteration 
scheme fails to search the equilibrium when plasma column touches a limiter out- 
side of the torus [I, 21; that is, plasma column continues to shift outward or 
inward during iterations, depending on the initial guess of the plasma position 
larger or smaller than the equilibrium one, respectively. The same numerical dif- 
ficulty occurs when we study the equilibrium of a divertor configuration with the 
stagnation point (X point) outside of the torus, as in JT-60 tokamak device [3], 
because the location of the X point is almost constant during iteration for given 
plasma current and divertor coil current. 

Because the numerical phenomena observed above resembles the behaviour of 
positionally unstable tokamak plasma, the feedback control for positional 
instability offers the suggestion of a numerical scheme to overcome the above-men- 
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tioned problem. Lackner and Hagenow proposed an iteration scheme of enforcing 
convergence, where they introduced a predominantly vertical field in addition to a 
given external field and adjusted this field such that the magnetic axis is fixed to a 
prescribed position during each iteration [4, 51. This iteration scheme was also 
effective for regulating the vertical position of the magnetic axis in the configuration 
with an updown asymmetry, if a predominantly horizontal field was added to the 
given external field [46]. However, the position of the magnetic axis in 
equilibrium itself is the unknown factor that we have to determine. 

For the same problem, Blum, Le Foll, and Thooris also presented another 
method in which the Grad-Shafranov equation is solved by Newton iterations with 
the boundary condition such that the poloidal flux is null on the edge of a com- 
putational domain due to the presence of an iron-core transformer [7]. This 
method is not applicable, however, to the tokamak equilibrium with an air-core 
transformer, since the poloidal flux on this edge is not always kept constant during 
the numerical iterations. 

In this paper, we propose a new numerical method through which the 
equilibrium configuration can be obtained for a given external field and prescribed 
plasma parameters in the tokamak configuration with plasma surface bounded at 
the material limiter or the X point outside of the torus. The basic idea and the 
numerical scheme are presented in Section II. Typical results and related dis- 
cussions are described in Section III. 

II. NUMERICAL SCHEME 

In this section, we describe in detail the numerical scheme to obtain the free- 
boundary tokamak equilibrium with the following constraints: 

(a) Plasma parameters such as plasma current I,, poloidal beta fipr and 
internal inductance li have the prescribed values. 

(b) Plasma surface contacts with a limiter located outside of the torus on the 
mid-plane as shown in Fig. 1. 

1 
OUTSIDE 
LIMITER 

FIG. 1. Tokamak configuration where plasma surface is bounded at an outside limiter located at 
R,,, on the mid-plane. It is assumed that plasma current flows clockwise. 
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(c) The vacuum field to maintain the plasma column in equilibrium is 
induced only by the given currents of external conductors. 

First, we consider the low /I, tokamak with circular cross section in order to make 
the problem clear. In this case, an equilibrium vacuum field By is given by the 
Shafranov’s formulation [ 81 

B’“’ _ pozp 

4nR, (1) 

where R,, and ap are the major radius and the minor radius of the plasma column, 
respectively. The constraint (b) imposes the relation ap = R,,, - R, on this 
equation. Figure 2 shows the schematic dependence of By’ on R,. The equilibrium 
vacuum field Bra’ increases monotonically with R, in contrast with the equilibrium 
where plasma surface contacts with an inside limiter or rail limiters parallel to the 
mid-plane. This positive gradient of Brat is the origin of the numerical instability 
[l, 21; that is, if we fix the external field with the vertical component BpX’ and solve 
the Grad-Shafranov equation with the initial guess for the plasma position RF’ 
(= R;Q+AR,) 1 arger than the equilibrium position RFQ corresponding to B;,,, 
then the plasma column feels the weaker vertical field and is pushed outward and 
vice versa. To suppress this instability, we introduce a virtual vacuum field ABz and 
adjust it such as 

Br”“( R;‘, Z = 0) = By’( R;‘, Z = 0) + AB,, (2) 

to maintain the plasma column at the reference position Rkf. For plasma with low 
B, and circular cross section, the above virtual vacuum field ABz can be 

1 
I / 

REP ref RP 
P RP 

FIG. 2. Equilibrium vacuum field IS:., as a function of major radius R,. II:., agrees with a given 
external field .:,I at the equilibrium position R, EQ. The virtual vacuum field LIB, means a correction field 
for the displacement AR,, of plasma column from R,“Q. 
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approximately estimated by linear expansion of the Shafranov’s formulation in the 
vicinity of RFQ as follows: 

8R,EQ 

out - RFQ 
(3) 

It is clear that ABZ is a monotonic function of R;’ or the displacement AR, from 
RFQ, and that AB, must vanish in the equilibrium state. Although the equilibrium 
position of the plasma column R, EQ is unknown, the relation between AB, and R;’ 
gives us the information whether RF’ is greater than RFQ or not; that is, RF’> RFQ 
for AB > 0 and Rref < REQ for AB, < 0 as illustrated in Fig. 2. Therefore, by check- 
ing the’sign of AB,” and modifying RF’ appropriately, we can make RZ,e’ converge to 
Rp”Q. 

Based on the above idea, the numerical procedure presented here consists of two 
iteration loops; minor iteration loop and major iteration loop. Figure 3 shows the 
flow chart for the numerical procedure. 

Initial setting/modification 11 
cc Minor loop x 

. to adjust Ip& BP to prescribed values 

. to salve Grad-Shafranov eauation 

1 . to fix plasma surface at R," & Rout 1 'Wf 

FIG. 3. Flow chart for numerical scheme. Major loop which modifies a reference position RF’ in 
accordance with the virtual vacuum field dB, is added to minor iteration loop. R:;’ is detined by Eq. (6). 
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In the minor iteration loop, we solve the Grad-Shafranov equation under the 
constraints (a) and (b), and regulate the plasma column at the given reference 
position Rref through the iteration scheme of the enforcing convergence [4,5]. For 
this regula:ion of the plasma position, the virtual vacuum field AB, is adjusted so as 
to satisfy Eq. (2). At first, we solve the Grad-Shafranov equation with only the 
external field and obtain the poloidal flux $“(R, Z), where n is the number of the 
minor iteration steps. Next, we determine the virtual flux A@(R) as follows: 

A@‘(R) = - $“(R;,“‘, Z = 0) RfZ.t - R2 

out - (K,32’ 

The virtual vacuum field with the spatial uniformity AB: is given as 

2@( R;,“‘, Z = 0) 
AB;=;&A$“(R)= R2 

out - (K,“)* ’ 
(5) 

where R;,f is the innermost location of the reference plasma surface defined by 

Rref E 2R”f - R 
I” P out 

. (6) 

Then we add A$” to 4” and obtain I,$“: 

$“( R, Z) = t&R, Z) + A+“(R). (7) 

The above numerical procedure is schematically illustrated in Fig. 4. It is obvious 
that the plasma surface passes the two reference points R,,, and Rgf on the mid- 

FIG. 4. Schematic illustration of numerical procedure in minor loop. The poloidal flux @ is 
described as 

4wR a = tip, Z) + cjl,,dR Z) - tip,,,> z = 0) - ((l.lt(Lt> z = 0) 

where $; and IL,,, are the poloidal flux produced by the plasma current and the external conductor 
currents, respectively. In order to tix the plasma column at the reference position RF’, the virtual flux 
A@’ defined by Eq. (4) is added to @. 
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plane; V(L,, Z = 0) = 0 because of 1,6”(&,~, Z=O)=O and dt+P(R,,,)=O, and 
I+Q”(&;~, Z = 0) = 0 because of d$“(R;;“‘) = - $(&gf, Z = 0). This procedure is 
repeated until Ic/” converges, and we can know the sign of AB, for the given 
reference position R;‘. 

The virtual vacuum field AB, depends not only on the reference position RF’ but 
also on I, and p,. The change of Z, and /I, during iterations in the minor loop 
would disturb the monotonic dependence of ABz on RF’ as illustrated in Fig. 2, and 
might break down our convergence scheme. So in the minor loop, I, and /I, are 
adjusted to the prescribed values Z;’ and fl; respectively through the iteration 
procedure such as, for example, 

p+j--L(p~tLp;-I), (9) 

(10) 

where p^” and A” are iterative parameters for I, and /I, respectively and U($) is a 
current density profile. 

After the convergence of the minor iteration loop, the modification of the 
reference position R, ref is made at each iteration cycle of the major loop. According 
to the sign of AB;, we move the reference position Rrf to 

R’ef,” + 1 = Rd,m _ m gm . 6R, 
P P (11) 

where m is the number of the major iteration cycle, 6R is a constant shift length 
with the positive value and a”’ is defined as 

cTm= +l for ABy>O, 

=- 1 for ABT < 0: 

Once the two reference positions with different signs of AB, are obtained, the next 
reference position is adjusted by using the Regula-Falsi method. Finally, when AB; 
or AR, becomes sufficiently small, we stop the iteration and obtain the equilibrium 
which satisfies the constraints (a) to (c). 

III. RESULTS AND DISCUSSIONS 

The numerical scheme presented here was incorporated into the free-boundary 
MHD equilibrium code SELENE 40 [9]. The virtual vacuum field numerically 
obtained as Eq. (5) was first compared with the analytic one given as Eq. (3) for 
plasmas with circular cross-section and low p,. Figure 5 shows a good agreement 
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AR,/ R; 

FIG. 5. Virtual vacuum field dBz for displacement AR,, from equilibrium position RFQ. Basic 
parameters are p,, + 1,/2 = 0.49, RFQ/a, = 5.20, RFQJRour = 0.84 and n-index = -(R/B:"')(dB:X'/dR)=O. 
Numerical result (dashed curve) is compared with analytic one (solid line). The circles # 1 to #6 
indicate sequential traces of dB, with respect to the reference position set up in major loop. 

between them near the equilibrium position. In the minor loop, plasma column can 
be regulated to given reference position with the convergence accuracy of 
1 (II/” - $” ~ ‘)/tiaxisI < 10 P6 after about ten interations. 

The sequential traces of the virtual vacuum field for the reference position is also 
shown in Fig. 5. The circle # 1 indicates the initial reference position and the 
corresponding virtual vacuum field. After the two reference positions labeled #3 
with dB, < 0 and # 4 with ABz > 0 are found out, the equilibrium position marked 
#6 can be obtained by the Regula-Falsi method. 

The reference position converges to the equilibrium one with the increase in 
iteration of major loop as shown in Fig. 6(a). In order to get an adequate solution 
for plasma position, it is needed for the convergence accuracy to satisfy 
~dt+P/~,&~ < 1 x 1O-4 as seen from Figs. 6a and b. 

The qualitative nature of this result is unchanged for (i) initial reference position 
far from the equilibrium one, (ii) high fl, plasmas, and (iii) external field with non- 
zero decay index for non-circular plasma cross section. Namely, AB, increases 
monotonically with AR, and becomes zero at AR, = 0 in these cases, too. As long 
as this dependence is held, this numerical scheme is valid for the solution procedure 
of plasma equilibrium with high p, and/or non-circular cross-section. For example, 
the high /I, tokamak equilibrium with non-circular cross section (8, = 2.0, aspect 
ratio = 4.9, ellipticity = 1.4, triangularity = 0.1 and decay-index = - 2.0) was easily 
obtained by this method. 

This numerical scheme can be also applied to the divertor conhguration of which 
X point locates outside of the torus, as in JT-60. In this configuration, the location 
of the X point R, is almost constant in the minor iteration loop and plays the same 
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FIG. 6. Reference position set up (a) and convergence accuracy (b), as a function of iteration cycle of 
major loop. Basic parameters are the same as in Fig. 5. Convergence accuracy IA$“/+“,,i,l less than 
1 x 10e4 is required for an adequate solution of plasma position. 
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FIG. 7. Equilibrium of divertor configuration in JT-60. Basic parameters are fi, + I,/2 = 2.62, 
21MI /I, = 0.51, I,&IMI = - 1.00, and n-index = 0.68. 
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role as the outside limiter. This is why the plasma column is fixed at R;’ as well as 
the plasma current and the divertor coil current are constant. Therefore we can 
replace R,,, in Eqs. (4) - (6) by R,. The equilibria of the divertor configuration in 
JT-60 have been successfully obtained from low /?, plasma to high /3, plasma. 
Figure 7 shows a typical result of equilibrium configuration with /?, = 2.1. 

It is concluded that the numerical method presented in this paper can provide a 
useful procedure to solve the tokamak equilibrium for a given external field in the 
configuration where piasma surface is always determined at an outside limiter. 

In the meanwhile, for the tokamak configuration, where the plasma surface is 
always bounded at an inside limiter or at rail limiters parallel to the mid-plane, the 
equilibrium can be also solved through this numerical scheme withot the major 
loop. In this case, the virtual vacuum field is used as an acceleration parameter and 
saves the computational time by a factor of more than 3 compared with the stan- 
dard method. 

In this paper, the numerical scheme has been restricted to the equilibrium with 
an up-down symmetry. It is very easy, however, to extend our numerical scheme to 
the up-down asymmetric configuration such as a single null divertor. The 
equilibrium for a given external field will be obtained by using the virtual vacuum 
field with the horizontal component AB,. 
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